Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Futur ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38416361

ABSTRACT

The grey maize weevil, Tanymecus dilaticollis, is a polyphagous species, which is among the most important pests of maize in Southeastern Europe. The efficacy of commercial products with two species of entomopathogenic nematodes (EPNs), Steinernema carpocapsae and Heterorhabditis bacteriophora, was investigated against adults of the grey maize weevil under laboratory conditions. Nemastar®, containing S. carpocapsae was more effective on T. dilaticollis adults than Nematop® containing H. bacteriophora, when applied uniformly to the surface of the soil, on Petri dishes containing T. dilaticollis adults. Results showed that S. carpocapsae rates of 83-333 infective juveniles/adult caused > 94% mortality in T. dilaticollis adults, whereas H. bacteriophora caused 27-61%, adult mortality, after exposure of insects to the commercial products of EPNs for 15 days. The infection rates of EPNs increased with concentration applied and ranged from 70-83% and 19-64% for Nemastar® and Nematop®, respectively. Subsequent field and semi-field tests were conducted with Nemastar® (application rate of 50 million S. carpocapsae per 100 m2) in maize crops with biological (mycoinsecticide Naturalis®, biofungicides and fertilizers) and chemical seed treatment (Gaucho® FS 600; active ingredient: imidacloprid) in Knezha, Bulgaria. Nematodes were found only in the dead specimens, in open plots and cages sprayed with the commercial nematode product. Nematode sprayings contributed for higher maize yields in the open maize plots in the fields with different seed treatments. We suggest that the use of powder formulation of S. carpocapsae in combination with biologically treated maize seeds can contribute to minimize the use of chemical insecticides against the grey maize weevil. The results obtained can be used as a base to further tests to ascertain the efficacy of EPNs products before they can be recommended for use in the integrated approach to T. dilaticollis management.

2.
Ecol Evol ; 9(17): 9546-9563, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31534674

ABSTRACT

The alfalfa weevil (Hypera postica) is a well-known example of a worldwide-distributed pest with high genetic variation. Based on the mitochondrial genes, the alfalfa weevil clusters into two main mitochondrial lineages. However, there is no clear picture of the global diversity and distribution of these lineages; neither the drivers of its diversification are known. However, it appears likely that historic demographic events including founder effects played a role. In addition, Wolbachia, a widespread intracellular parasite/symbiont, likely played an important role in the evolution of the species. Wolbachia infection so far was only detected in the Western lineage of H. postica with no information on the infecting strain, its frequency, and its consequences on the genetic diversity of the host. We here used a combination of mitochondrial and nuclear sequences of the host and sequence information on Wolbachia to document the distribution of strains and the degree of infection. The Eastern lineage has a higher genetic diversity and is found in the Mediterranean, the Middle East, Eastern Europe, and eastern America, whereas the less diverse Western lineage is found in Central Europe and the western America. Both lineages are infected with the same common strain of Wolbachia belonging to Supergroup B. Based on neutrality tests, selection tests, and the current distribution and diversification of Wolbachia in H. postica, we suggested the Wolbachia infection did not shape genetic diversity of the host. The introduced populations in the United States are generally genetically less diverse, which is in line with founder effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...